Two-phase equilibrium states in individual Cu–Ni nanoparticles: size, depletion and hysteresis effects

نویسنده

  • Aram S Shirinyan
چکیده

In isolated bimetallic nanoscale systems the limit amount of matter and surface-induced size effects can change the thermodynamics of first-order phase transformation. In this paper we present theoretical modification of Gibbs free energy concept describing first-order phase transformation of binary alloyed nanoparticles taking into account size effects as well as depletion and hysteresis effects. In such a way the hysteresis in a form of nonsymmetry for forth and back transforming paths takes place; compositional splitting and the loops-like splitted path on the size dependent temperature-composition phase diagram occur. Our calculations for individual Cu-Ni nanoparticle show that one must differentiate the solubility curves and the equilibrium loops (discussed here in term of solidification and melting loops). For the first time we have calculated and present here on the temperature-composition phase diagram the nanomelting loop at the size of 80 nm and the nanosolidification loop at the size of 25 nm for an individual Cu-Ni nanoparticle. So we observe the difference between the size-dependent phase diagram and solubility diagram, between two-phase equilibrium curves and solubility curves; also intersection of nanoliquidus and nanosolidus is available. These findings lead to the necessity to reconsider such basic concepts in materials science as phase diagram and solubility diagram.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of Cu Doped NiO Nanoparticles by Chemical Method

The Cu doped NiO (NiO:Cu) nanoparticles were synthesized by co-precipitation method using NiCl2.6H2O, CuCl2.2H2O for Ni and Cu sources, respectively. Sodium hydroxide has been used as a precipitator agent. Effect of Cu doping agent on the structural and optical properties of nanostructures were characterized by XRD, SEM, AFM, spectrophotometry, FTIR a...

متن کامل

Green Synthesis and Characterization of Ni-Cu-Mg Ferrite Nanoparticles in the Presence of Tragacanth Gum and Study of Their Catalytic Activity in the Synthesis of Hexanitrohexaazaisowurtzitane

Here, we report the synthesis, characterization, and catalytic evaluation of Ni-Cu-Mg ferrite using tragacanth gum as biotemplate and Metals nitrate as the metal source by the sol-gel method without using any organic chemicals. The sample was characterized by powder X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Vibrating Sample Magnetometer (VSM), and Scanning El...

متن کامل

Influence of surface anisotropy on the hysteresis ofmagnetic nanoparticles

We present the results of Monte Carlo simulations of the magnetic properties of individual spherical nanoparticles with the aim to explain the role played by surface anisotropy on their low temperature magnetization processes. Phase diagrams for the equilibrium configurations have been obtained, showing a change from quasi-uniform magnetization state to a state with hedgehog-like structures at ...

متن کامل

Characterization of the metastable Cu-Fe nanoparticles prepared by the mechanical alloying route

Although Cu and Fe are immiscible under equilibrium conditions, they can form supersaturated solid solutions by mechanical alloying. In this paper, nano-structured of the metastable Cu-Fe phase containing 10, 15, 20 and 25% wt Fe were synthesized by intensive ball milling for 15h, in order to achieve a solid solution of Fe in Cu. The phase composition, dissolution of the Fe atoms into the Cu ma...

متن کامل

Calculation of the Mechanical Properties ofCu-Ni Nanocluster

The aim of this research is to calculate the elastic constants and Bulk modulus of Cu-20 wt% Ni random Nanoalloy. The molecular dynamics simulation technique was used to calculate the mechanical properties in NPT ensemble. The interaction between atoms as well as cohesive energy in the Nanoalloy modeled systems was calculated by Morse et al. two body potential. Also the temperature of the syste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015